艾伦图灵,1936年发布《论可计算数及其在判定问题上的应用》,提出算法和计算机两个概念。1950年发布论文《计算机与智能》,提出了“图灵测试”。
1956年美国达特茅斯会议“人工智能”概念诞生。人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。根据对环境的感知做出合理的行为并做出做大收益。
人工智能三个层面:计算智能(能算能存)、感知智能(能听能说,能看能认)、认知智能(能理解,会思考)。
计算智能,快速计算和记忆存储,速度较快占领高地。1996年国际象棋大师卡斯帕罗夫4:2击败IBM深蓝,但1997年输给了深蓝。
感知智能,能听能说,能看会认,具备听说读写的能力。人工智能比人类智能更具优势,可以主动感知,比如BigDog、自动驾驶汽车等,充分利用深度神经网络和大数据的成果。
认知智能,能理解、思考、决策,具备概念、意识、观念都是认知智能的表现。人工智能开始主动开展探索,在一定程度上模拟人类的创作过程。

现阶段实现AI的基本方法及技术领域。
从技术应用场景展开,包括计算机视觉、语音识别、自然语言处理等概念。
从实现AI的技术工具和方法论展开,机器学习是是实现AI的最大技术工具集,包括监督学习、无监督学习、强化学习。其中深度学习是机器学习最重要的分支,实现AI效果最佳,深度学习的核心是神经网络的算法技术。

名词解释:
人工智能(Artificial intelligence):人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。
算法(Algorithms):在数学(算堂)和计算机科学中,一个被定义好的、计算机可执行的有限步骤或次序。常用于辻算、数据处理和自动推理,例 f(x)=y。

机器学习(Machine learning):设计和分析一些让计算机可以自动“学习”的算法。机器学习是一类从数据中自动分析获得规律并利用规律对未知数据进行预测的算法。
深度学习(Deep learning):是机器学习中一种基于对数据进行表征学习的算法。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。
神经网络(NN):现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以也是数学统计学方法的一种实际应用,
监督学习(Supervised learning):机器学习的一种方法,可以由训练资料中学到或建立一个模式(函数/learning model),并依此模式推测新的实例。
无监督学习(Unsupervised learning):机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的资料进行分类或分群。

人工智能特点:厚基础、重交叉、宽口径。
学科领域:数学与统计、科学与工程、计算机科学与技术、人工智能核心、认知与神经科学、先进机器人技术、人工智能与社会、人工智能与平台。

标签: 人工智能

添加新评论